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The nonlinear stability of gas bubbles in acoustic fields is studied using a multiple- 
scale type of expansion. In particular the development of a subharmonic or a syn- 
chronous perturbation to the flow is investigated. It is shown when an equilibrium 
non-spherical shape oscillation of a bubble is stable. If the amplitude of the sound field 
is E then it is shown that subharmonic perturbations of order st can exist and be 
stable. Furthermore synchronous perturbations of order E can exist and be stable. 
It is shown that synchronous perturbations, unlike the subharmonic case where the 
bifurcation is symmetric, bifurcate transcritically when the driving frequency is 
varied and also undergo secondary bifurcations. It is further shown that, in certain 
cases, the latter properties of the synchronous modes cause the flow to exhibit a 
hysteresis phenomenon when the driving frequency is varied. 

1. Introduction 
Radial oscillations of cavitation bubbles in acoustic fields have been the subject of 

many investigations both in linear and in nonlinear regimes (see Plesset & Prosperetti 
1977 for a recent review of the literature). Much of this work originated as an attempt 
to explain the experimentally observed connexion between the appearance of a signal 
at half the frequency of the acoustic wave and the onset of cavitation developing in 
an acoustically irradiated liquid. The matter has not been wholly settled yet. However 
it has been shown that the instability of the purely harmonic motion can definitely 
lead to a subharmonic response, depending on the values of the relevant parameters 
and on the initial conditions. 

Non-spherical oscillations of cavitation bubbles are less well understood. It is 
known (Elder 1959; Gould 1966) that experimentally these surface oscillations arise 
as a bifurcation from the basic purely radial oscillatory motion. Such bifurcations 
occur in relatively low-viscosity liquids as the amplitude of the acoustic field exceeds 
a threshold dependent on the relevant parameters of the problem. Further increase 
of the wave amplitude leads to further bifurcations and eventually to a chaotic 
surface agitation. 

In addition to the onset of surface oscillations the presence of small-scale streaming 
was detected in the above experiments. This effect, often called ' microstreaming ', 
has never been properly understood. Davidson & Riley (1971) proposed an explana- 
tion in terms of the steady streaming induced by a rigid sphere oscillating along a 
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diameter. However the latter phenomenon occurs continuously however small the 
amplitude of the oscillation, whereas the onset of ‘ microstreaming ’ is associated with 
a bifurcation, a t  least for a range of sonic amplitudes. 

The importance of microstreaming as a mechanism for the acceleration of rate 
processes (rectified diffusion and heat transfer) has been discussed by Eller (1969) and 
Gould (1974) among others. 

Another phenomenon displayed by bubbles caused to pulsate by a sound field was 
first detected by Benjamin & Strasberg (1958) and subsequently observed by Eller 
& Crum (1970). A bubble, trapped and held in a fixed position by an acoustic standing 
wave, begins to move erratically if a threshold wave amplitude is exceeded. The 
suggestion originally made by Strasberg & Benjamin (1958), that the dancing motion 
might be caused by the presence of surface oscillations, was then rejected by the same 
authors owing to the inadequate agreement between theoretical and experimental 
results. The work of Eller & Crum (1970) concludes that a calculation of the threshold 
amplitude for surface oscillations more accurate than those performed by Benjamin 
& Strasberg (1958) and Hsieh & Plesset (1961) leads to a better agreement with the 
experimental threshold for the erratic dancing motion of bubbles. Thus Eller & Crum 
(1970) support the original suggestion of Benjamin & Strasberg (1958). 

The aim of the present work is to follow the perturbation, which the linear theory 
predicts to grow fastest for suitable values of the parameters of the problem, into the 
nonlinear regime. In the absence of any damping effect, and assuming that the per- 
turbations are axisymmetric, the basic radial oscillatory motion will be shown to 
bifurcate into a non-spherical flow which is periodic in the fast time scale imposed by 
the acoustic excitation and is slowly modulated on the time scale associated with the 
linear growth rate. The perturbations are found to eventually reach equilibrium 
amplitudes given by the singular points of the amplitude equations derived in $5. 
We also show that a steady-streaming component may be present in the bifurcated 
flow under suitable conditions. Furthermore we discuss how the present theory can 
explain the mechanism whereby surface oscillations can excite the displacement of 
the centre of gravity of the bubble, thus leading to the dancing mentioned above. 

The analysis will be restricted to small amplitudes of the acoustic wave. Any 
fundamental or ultraharmonic resonance (see Prosperetti 1974) will also be 
assumed absent in the basic radial motion. Under the above conditions the problem 
will be shown to be amenable to analytical treatment. 

The procedure adopted in the rest of the paper is the following. In the next section 
we formulate the problem in non-dimensional form. In $ 3  we derive a basic radial 
solution of the fundamental equations, under non-resonant conditions, as a power 
series of the ‘small’ amplitude of the acoustic wave. Section 4 is devoted to a linear 
stability analysis; and particularly to the cases of subharmonic and synchronous 
responses of the perturbations. The components of the perturbations which linear 
theory predicts to grow fastest are followed in a weakly nonlinear regime in $ 5 both 
for the subharmonic and the synchronous cases. The analysis leads to amplitude 
equations whose solutions are discussed in 3 6. A discussion of the implications of the 
present results follows in $ 7. 
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2. Formulation of the problem 
We consider a single cavity, filled with a permanent non-condensable gas, immersed 

in an unbounded liquid. We neglect any effect of the vapour necessarily present in 
the cavity. 

The bubble is set into pulsation by a sound field of wavelength large compared with 
the bubble radius. Thus the presence of the acoustic wave can be modelled in an 
approximate way by assuming that far enough from the bubble the pressure is given by 

p" = PZ( 1 + € cos wt") ,  (1)  

where P$ is the average ambient pressure, t* is time, w is the frequency and E is the 
amplitude of the wave. (The asterisk denotes dimensional quantities.) Furthermore 
the flow in the liquid can be assumed to be incompressible. 

We restrict our attention to small-amplitude acoustic waves, and thus write 

€ < I .  (2) 

The pulsations of the cavity, forced by the sound field, will be assumed to occur 
around the equilibrium radius R, defined by 

R,(P,* - P*,) = 2~ (3) 

where (r is surface tension and P,* is the equilibrium internal pressure of the cavity. 
The effect of any mechanism which can alter the value of R,, like rectified diffusion, 
will be neglected. Indeed such a mechanism would lead to a parametric variation of 
R, on a time scale much slower than those relevant for the instability problem treated 
here. 

Besides neglecting the acoustic radiation of energy, we will neglect viscous effects 
in the liquid. Since the influence of viscosity is presumably confined within a layer of 
typical thickness (2v /w)*  the inviscid assumption will be justified for relatively high 
frequency oscillations and relatively large bubble radii. 

Finally we neglect the motion of the gas inside the cavity and assume that its 
pressure p? is uniformly distributed according to the isothermal law 

p,"/P,* = v* 0 l V *  (4) 

where V,* is the volume of the cavity a t  equilibrium, V* is its volume a t  time t". 
The assumption that the pressure is uniform in the cavity is justified if the size of 

the cavity is small compared to the acoustic wavelength in the gas. Furthermore we 
are justified in assuming that the gas behaves isothermally if the thermal penetration 
depth in the liquid is small compared to the size of the cavity. If the latter ratio is 
large then the gas behaves adiabatically. We do not pursue this case but it can be 
shown that the qualitative description of the bifurcating solutions in this case is 
similar to that appropriate to the isothermal case. A more detailed discussion of the 
assumptions leading to (4) is given by Plesset & Prosperetti (1977) .  

Let us then consider a general non-spherical motion of the cavity characterized by 
the following equation of the interface. 

F(r",  8, $, t") = 0 (5) 

with (r*, 6,$) spherical polar co-ordinates. 
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Under the above conditions the differential problem governing the inviscid 
irrotational flow of the liquid can be written 

V2@ = 0, (6) 

where the variables have been made non-dimensional in the form 

t=t*(--$),  P* 4 r*=rRo,  p * = P $ p ,  $ * = R o ( - - )  P$ 4 @ 

and (W,,W,) are the non-dimensional principal radii of curvature of the interface. 
The surface tension parameter Y and the frequency parameter L2 are defined by 

and the non-dimensional velocity vector v is defined as 
pressure of the cavity pi has the non-dimensional form: 

( 1 + 2 9 )  p .  = 
a V ( t )  

( - V4) .  Finally the internal 

(10) 

where V ( t )  is the non-dimensional volume of the cavity at time t .  Further we note 
that (7)  and (8) are the kinematic and dynamic boundary conditions respectively to 
be satisfied on the boundary of the bubble. 

3. Basic flow 

that 
The governing differential problem ( 6 ) ,  (7), (8) admits a purely radial solution such 

P = r -R( t )  = 0, (11) 

R2R 
@ = -  

r J  

with R(t) the solution of the well-known generalized Rayleigh equation 

2 9  1 + 2 9  
R R3 

RR+gR2+(1+ECOsnt)+--- = 0. 

Periodic solutions of (13) can be easily obtained as power series in the parameter 8, 
provided the frequency IR does not attain a value close to an integral fraction or 
multiple of the natural frequency R, defined by 

Qi = 3 + 4 Y .  
Using such a procedure we find 
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where 

4. Linear stability 
We consider a perturbed interface such that 

p = - R(t) - d o ,  $ 3  t ) ,  (19)  

and assume the perturbation g to be infinitesimal. Moreover we expand g in terms of 
a complete set of orthonormal functions and write 

with YE the spherical harmonic of order (n, m) and GZ a function of time to  be deter- 
mined. The corresponding form of the perturbed velocity potential CD can be written 
in terms of unknown functions CDE(t) in the form: 

On substituting (20 )  and (21 )  into ( 7 ) ,  (8 )  and neglecting nonlinear terms we find that, 
as found for example by PIesset & Mitchell (1950),  y satisfies 

where 
y = GZRg. (23 )  

I n  the general case of large amplitude forcing, the equation (22 )  is of the Hill type 
and must be solved numerically. I n  the present small-amplitude case, after defining 

T = +at, (24) 

and using (15), the equation takes the form 

(25)  
d2Y - + (U + b cos 2T+ (c+d cos 45") .9 + O(e3)}y = 0, 
dT2 

with 
a = ( Q i - 3 ) Q - 2 ( n + 2 ) ( n 2 - 1 )  

b = 4 R 1 { ( n + + ) - $ Q - 2 ( Q ~ - 3 ) ( n + 2 ) ( n 2 -  1)},  (266)  

c = { 3 a - # - ( 2 n + 1 ) } R ~ - 3 a R 2 , ,  (26c)  

d = (3a + p - ( 2 n  + 1)) B: + {8 (2n  + 1 )  - 3u} &. ( 2 6 4  

The equation ( 2 5 )  is still of the Hill type and coincides with that derived by Eller 
& Crum (1970).  The equations discussed by Benjamin & Strasberg (1958) and Hsieh 



428 P. Hall and G. Seminara 

& Plesset (1961) can be obtained from (25) if terms 0 ( e 2 )  are neglected, Such equations 
are of the Mathieu type. Thus the solutions of (25) can be put in the form 

!AT) = exp CuT) P(T)  (27) 

with P(T)  a periodic function of time. Furthermore it is well known that unstable 
(Re (p) > 0) regions exist in the (a, E )  plane close to the points ( N 2 ,  0) with N = I ,  2, 
3 , 4 ,  ... . 

We consider separately the behaviour of the linear solution in a neighbourhood of 
the points ( 1 , O )  and (4,O). 

(a) Subharmonic case 

Let us show that in a neighbourhood of ( 1 , O )  the response of the disturbance to the 
basic oscillation is subharmonic and p - O(e).  

Let us set up the following expansions 

Y = Yo + €91 + 0 ( E 2 ) ,  

a = 1 - 2hs + 0 ( € 2 ) ,  

(28) 

(29) 

where 
!2 = a( I + A € )  + 0 ( € 2 ) ,  

0 = {(a; - 3) (n+ 2) (n2- I)}&. 

The time dependence of the perturbations is described by two time variables, a 
fast one T associated with the forced oscillation, and a slow variable r defined by 

= €17. (32) 

If the above expansions are substituted into ( 2 5 )  and the differential systems 
obtained by equating terms of order e0 and E are solved we can show that, correct 
t o  order E ,  

(33) p = & (,A2 - tb2)J E ,  

so that the flow is unstable if h2 > ib2.  

(b )  Xynchronous cme 

We now consider the case a = 4 and show that the linear response of the perturbation 
is synchronous with the forcing and ,.a N_ 0(s2 ) .  Let us set up the expansions 

( 36) 

and now take r = e2T. If we substitute the above expansions into (25) and solve the 
resulting differential equations obtained by equating like powers of E we can show 
that, correct to order e2, the growth rate p is now given by 

0 
!2 = - (1  +h€2)+0(€2), 

2 

,u = If: 1 [p + co - - - 8h - b; - co -5 + 8h))*e2, 
4 48 do 2 ) (4?8 2 (37) 
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FIGURE 1. The growth rates of the harmonics n = 2, 3, 4 plotted versus R2 
for the synchronous case. 8, n = 2 ;  A, n = 3 ;  B, n = 4. 

where c0,do,bo are given by ( 2 6 b ) )  (26c), ( 2 6 d )  respectively with s1 replaced by ifi. 
Thus the flow is unstable for values of h such that 

( - b f - c o - & )  5 < 8h < ( ~ + C o - ~ ) ) .  48 2 

From ( 3 7 )  one can compute the growth rate of the perturbations as a function of Qo 
and n within the unstable region given by ( 3 8 ) .  We can use the above results to deter- 
mine approximations to the growth rate for the subharmonic and synchronous cases. 
However it is clear that in both cases the growth rates depend on n. In  order to make any 
analytical progress we restrict our attention to the case n = 2. In  some cases (see, for 
example, Hsieh 1974) other modes can be more unstable but, in general, the n = 2 
mode is the most dangerous. In  order to illustrate this point we have in figure 1 some 
plotted results for the synchronous case which enable us to predict that, within the 
inviscid scheme the fastest growing component of the perturbation is that corres- 
ponding to n = 2 except for a relatively small range of values of Of close to 3 where 
resonances of the higher harmonics are excited. Indeed the harmonic N resonates 
when ( Q ) n = N  equals (4)l-4" Qo with m = 1 , 2 , 3 ,  . .. and one can readily see that the 
resonance regions cluster in a neiglibourhood of the origin of figure 1. We also notice 
that the values of [ ,u ( / E Z  plotted in figure 1 are the maximum values in the unstable 
range ( 3 8 ) .  

5. Nonlinear stability 
We now follow in the nonlinear regime the evolution of the component n = 2 of 

the perturbation. We restrict our attention to $-independent disturbances (rn = 0). 
This a'ssumption, while simplifying the analysis considerably, does not seem to alter 
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the essential features of the nonlinear mechanism involved. We consider the sub- 
harmonic case and the synchronous case separately. 

(a) Subharmonic case 
Let us take a and Q to be given by (29), (30) respectively, and consider the weakly 
nonlinear process arising when the fundamental (n = 2) interacts with itself and the 
basic flow. 

The first-order interaction between the fundamental and itself reproduces the 
fundamental and gives rise to harmonics of order 4 and 0 (the latter represents a 
distortion of the basic flow). This behaviour depends on the properties of integrals of 
products of three spherical harmonics. The above components are both functions of 
the slow time variable 7 (as defined by (32)) and of the fast variable T (as defined by 
(24)) through second-order products of e iT,  e-iT. Second-order interactions between 
the harmonics generated at first-order and the fundamental reproduce the fundamental 
besides generating further lower and higher harmonics. The fast time dependence of 
the fundamental is also reproduced so that an orthogonality condition is required at  
this order to avoid the occurrence of secular terms. 

The latter requirement determines the order of magnitude of the fundamental 
which is found to be €4. The interaction of the basic flow with the fundamental leads 
to an O(&) contribution. 

The above arguments suggest that the following expansions be considered 

r = 1 + €ifl + ef2 + e3f3 + O(e2), (39) 

where fl = 91, f z  = P1 +go + 92 + 94, f 3  = 93, (41a, b, c) 

CD = R z l k - l  + +c($or-l + $zr-3 + $4r-5) + e%$3r-3 + O(s2), (40) 

(91, $1) = (Gz1(7, TI, $21(7, T)) Pz, (92, $2) = (G22(7, TI, $22(7, T)) f'2, 

(90 ,  $ 0 )  = (G01(7, TIj $01(7, T)), = R1 cos 2T7 

(94, $4) = (G41(7, T), $41(7, T)) P4, (933 $3) = (G23(7? T), $2d7,  T)) p2 

+terms orthogonal to P2. (42a-f) 

The bracket notation should not be confused with the scalar product introduced later 
in this section. 

Furthermore R, is given by (16) with Q replaced by fi and PN (cos 0 )  is the associated 
Legendre polynomial of order N .  After substituting (40), (41), (42) into (7) and (8) 
and defining 

(43) 



where Z(r)  is a complex function to  be determined a t  higher order. 
O[e) terms. We define the scalar product of the pair of functions f (O), g(O)  as 

Jonj(s) g ( e )  sin eae. 

We then equate terms of order e in (44), (45) and perform the scalar product of the 
resulting equations with Po. 

The differential problem for (Go,, is thus found in the form 

ii aG,, 
$01 = a + 2$21G21, 

By means of (46), (47) the equations (48) and (49) are readily solved to  give 

Go, = aol.ZE + bol(Z2e2iT + E2e-2iT) + hom, (50)  

$ol = Qi(bol+ 6) (Z2e2iT -@e--2iT) +horn, 
where 

&- 72 5fi2 - 24 

40( 0; - fi2) ' a01 = - 9  bo1= 

and horn denotes the homogeneous solution of (48), (49). This contribution is not 
relevant to  the present analysis which is restricted to values of which do not fall 
within any subharmonic or ultraharmonic resonance regions. 
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The scalar product of P2 with the O(s)  equations leads to a differential problem for 
(G,,, QZ2), which can be reduced to 

$22 = p 2 + +G21 $21, (53) 

72 

7n 
- a2G2z + G - - ̂2 (421)2 + +(G21)2. 

22 - aT2 

Using (46) and (47) the previous system can be solved to obtain 

G,, = +(zZ) - &(22e2iT + Z2e-2iT ) +horn, 

(54) 

(55) 

$ 22 - - 5% 2 Qi(Z2e2iZ‘-Z2e--2iT) +horn, (56) 

where the homogeneous solution can be ignored again for the present purposes. 

system for (G,,, $41) is 
Pinally the scalar products of the O(s)  equations with P4 are evaluated. The resulting 

(57) 
aG41 288G 

$41 = w + i m  21$21, 

and admits the solution 
- 

G,, = i& (222)  + gt (Z2e2iT + Zze-2iT) +horn, 

$ 41 - - T 1 2 ;  fii(22e2iT -Z2e-2iT) +home (59% b) 
O(&) terms. We then equate terms of order €8 in (44), (45). The pair of equations 

thus obtained is then multiplied by P2 and the scalar product evaluated. The resulting 
equation for G,, can be written in the form 

On substituting from the O(s*) and O ( E )  solutions into (60) the right-hand side of 
the resulting equation is found to contain terms proportional to eiT and e-iT. These 
terms force the ‘natural’ solutions of (60) thus leading to secular terms unless an 
orthogonality condition is satisfied. The required condition is 

(61) 
. dZ 
d r  

22- = -$&Z + 2hZ + (5-90 + 6aO1 - 7bO1) Z2Z. 

The solutions of (61) will be discussed in the next section. 
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(b)  Synchronous case 

We now suppose that a and R are given by (35) and (36) so that the neutral mode of 
linear stability theory is synchronous with the basic flow. We again determine how 
the fundamental mode n = 2 arises as a bifurcation from the basic flow. The interaction 
of this mode with itself and its higher harmonics is identical to that described above 
in detail for the subharmonic case. However, the fundamental mode must now 
interact with the basic flow twice before it is reproduced. Thus the scalings used for 
the subharmonic case must be altered and we therefore take the slow time variable 
7 = e2t. We then expand F and Q in the form 

where the coefficients in these expansions are as given by (41) and(42). 
We can now substitute from (62) into the kinematic and dynamic boundary con- 

ditions to give equation8 similar to (44) and (45). We can then equate terms of order 
€,I?,  etc. and determine the possible motions of the system. This tedious procedure is 
similar to that described above for the subharmonic case and so we only give the essen- 
tial details here. 

At order 6 we find that the first-order function pair (G,,, 4,,) is given by 

G - Ze2iT + Ze-2iT, 
21 - 

where 2(r)  is an amplitude function of the slow time variable r to be determined a t  
higher order. I n  fact 2 ( r )  is determined as a solvability condition on the order e3 
differential system for (f,, g3). This condition gives 

where b,, c,, do, a,, and b,, are as defined by (26d), (26b) ,  (26c) with R replaced by 
and (52) respectively. 

We note that, apart from the quadratic terms, the amplitude equation has linear 
and the usual cubic nonlinear terms. The quadratic terms arise from the interaction 
of the basic flow and the order €2 terms in the expansions of F and #. 

6. Solution of the amplitude equations 

The amplitude equation (61) can be solved analytically by defining 

(a )  Subharmonic case 



434 P. Hall and G .  Seminara 

FIGURE 2. Regions of the (a, E )  plane relevant to the discussion of the solutions 
of the amplitude equation for the subharmonic case. 

I n  fact the complex equation (61) is equivalent to the following system of two real 
equations for u and 8 

da2 - = $R,a2sin 28, 
a7 

(66) 

d(a2 cos 28) 
dr 

= (2h + a2 e )  a2 sin 28, 

where we have denoted by e the coefficient of the cubic term of (61). 

given in implicit form by 
The solution of the system (66), (67) corresponding to initial conditions (a,, 8,) is 

ea2 = P(8) _+ (Pz(8) + C$ 

with p(8) and C respectively defined as 

p( 8 )  = - 2h + gRl cos 28, (70) 

(71) c = ea$(ea$ + 4h - 7 4  cos 28,). 

The solution (68), (69) is bounded and periodic. Its nature depends on the sign of 
e and on the values of ( A ,  8,). This can more clearly be appreciated if we examine the 
nature of the singular points of (61). We refer to the three regions of the (a, e )  plane 
denoted by A ,  B, C in figure 2. 

The origin is a singular point of (61). It is easily shown to be a centre in the sub- 
critical regions A ,  C and a saddle point in the supercritical regions B. This result is 
obvious and merely confirms that the basic flow is stable to infinitesimal disturbances 
in A ,  C,  unstable in B as already known from the linear analysis. We are interested 
in investigating the axistence of further stable finite amplitude solutions. They 
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correspond to further singular points of (61). There are four possible singular points 
defined by ( - 2h +@,)/e (8 = 0 ,8  = n), 

( - 2h - :R,)/e (8  = in, 8 = Qn). 
a2= { 

For a given sign of e their existence clearly depends on which region of the (a ,€ )  
plane we are considering. 

If we assume that e is positive we can see that there are two more stable finite- 
amplitude solutions bifurcating subcritically in the regions A and supercritically in 
the regions B. These solutions lie either on the real or on the imaginary axis depending 
on whether the bubble is excited by the acoustic wave above or below volume reso- 
nance. Thus above resonance the bubble responds with finite-amplitude inviscid 
motion which is dominantly (i.e. a t  leading order) in phase with the excitation, whereas 
below resonance a phase difference of in exists. 

The stable finite-amplitude solutions of regions A and B correspond to centres and 
are located on the real (imaginary) axis for s, > ( < )  0. Two further singular points 
(saddle points) are present in region A and are located on the imaginary (real axis for 

If, for a given value of h less than ( -zlRll), we decrease E starting from a small 
positive value, the amplitude of the two stable subcritical solutions decrease till they 
merge for E equal to 0 into the origin which remains stable; further decrease of E leads 
to a pattern identical to  that obtained for positive E .  Alternatively if we fix a value of 
8, say positive, and increase A starting from a negative value less than ( - pl&l) the 
amplitudes of the subcritical solutions decrease and the zero solution is stable; when 
the value ( -$I.R,J) is reached the saddle points merge into the origin which becomes 
unstable and the amplitudes of the two finite solutions continues to decrease as h 
increases till they merge into the origin (when h equals (ZIR,])), which becomes stable. 

The sign of e also affects the solution. I n  fact for negative values of e one can readily 
show that two stable finite-amplitude solutions exist in regions C ,  B ,  and they lie on 
the imaginary or real axis depending on whether the exciting frequency is above or 
below volume resonance. Thus the role of the sign of e is merely to reverse the response 
of the bubble to the acoustic excitation. 

Figure 4 shows that e is positive for a large range of values of Q0. Thus, in the 
present problem, no finite amplitude solution is found to occur in regions C ,  whereas 
two finite amplitude solutions occur in regions A and B. 

R1 > ( < ) O .  

( b )  Xynchronous case 

We now investigate the behaviour of the solution of (64) when h is varied. It is con- 
venient a t  this stage to define W = -+ZR, and write the equation which determines 

(73) 
.dW W in the form 

a- = y W + g F +  W2+2[WJ2+hW2W.  
d7 

Here the quantities y, g and h are defined by 

so that we are now interested in the solutions of (73) when the parameter y varies. 
The corresponding change in the driving frequency of the pressure oscillation at  in- 
finity can be evaluated using (36) and (74). The coefficients 9 and h appearing in (73)  
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FIGURE 3. The real solutions of (73), the amplitude equation for the synchronous 
mode for different values of the driving frequency. 

take on different values when the parameter R, varies. For this reason we discuss the 
solutions of (73) for general values of g and h and we shall later show which solutions 
are relevant to the physical problem under investigation. 

We first consider the equilibrium solutions of (73) and their stability properties. It 
is easily seen from this equation that, apart from the trivial solution W = 0, there are 
purely real equilibrium solutions given by W = U where U satisfies 

This solution corresponds to the periodic solution ce,( t )  of Mathieu's equation and 
exists only for y > - g + 9/4h or y < - g + 9/4h depending on whether h < 0 or h > 0 
respectively. For definiteness we now take h to be negative and the real solutions of 
(75) are then as shown in figure 3. The stability properties of these solutions depend 
on the quantities h and g and are closely related to the question of whether or not 
further solutions of (73) exist. We might expect that such solutions would be purely 
imaginary corresponding to the periodic solution se,(t) of the Mathieu equation. 
However the quadratic terms in (73) prevent this occurrence so any further solutions 
must be neither purely real nor purely imaginary. Suppose that such equilibrium 
solutions exist and are of the form W = U + i V with U + V + 0. If we replace W by 
U + i V in (73) and take real and imaginary parts of this equation we obtain a pair of 
coupled equations for U and V .  Some straight-forward manipulations with these 
equations shows that the modulus of the complex solutions is determined by 

0 = (y+g)+3U+hU2. (75) 

so that these solutions only exist for ( y - g )  g / ( l  -hg) > 0. The real and imaginary 
parts of this solution are then given by 

u = - 1 WJ2/(2g), (77) 
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FIGURE 4 (a).  For legend see page 17 .  

Thus a further constraint on y arises from the condition that (1 - I W12/4g2) is positive. 
The two conditions effectively restrict the existence of the mixed mode (complex) 
solution to a finite range of values of A. This range of values of h depends on g and h. 
We again assume that h is negative and it is then necessary to consider the following 
cases : 

1 1 
h’ h ( a )  h < 0, g > 0; (b)  h < 0, 0 > g > -. (c) h < 0, 9 < - < 0. 

The nature of the complex solutions and the real solutions for the above cases is shown 
in figures 4(a, b,  c). We have also indicated the stability properties of the different 
solutions. We note that the complex solutions occur as secondary bifurcations from 
the real ones. Moreover, since V / U  is a function of y ,  the phase difference between 
the mixed mode solution and the basic flow changes with the driving frequency. This 
is the essential physical difference between the solutions corresponding to real and 
complex ampIitudes. We note that only in the case g < l/h < 0 is the mixed-mode 
solution stable and even then the range of frequencies for which the solution exists is 
finite. We postpone a more detailed discussion of figure 4 until we have discussed the 
solutions of (76) for ?L positive. 
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FIGURE 4 (b ) .  For legend see facing page. 

If h is now taken to be positive we write w = - W in which case (73) becomes 

(79) 

The form of the right-hand side of (79) is identical to that of (73) apart from the sign 
of the linear and the cubic terms. Thus the previous discussion for h < 0 can be applied 
directly to  the case h > 0 by changing the signs of y ,  g and h in that discussion. We 
note that the sign of the time derivative on the left-hand sides of (73) and (79) are 
different but this only changes the direction of the phase plane contours and does not 
alter any of the stability properties shown in figure 4. 

.dW 
d7 

- % - =  -yW-gW+W'+21W1'-hh2~.  

Thus for h positive it is necessary to consider the cases 

1 1 
h ;  h (a) h > 0, g < 0; ( b )  O < 9 < - (c) 0 < - < 9. 

The equilibrium solutions of (79) corresponding to these three cases are easily 
described by reference to figures 4(a, b,  c) respectively. This is done simply by 
replacing U ,  V ,  g, h and y by - U ,  - V ,  -9, - h, and - y in these figures and their 
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t v  

FIGURE 4. The solutions of (73) and their stability properties for different values of the driving 
frequency. (a) h < 0, g > 0 ;  ( b )  0 < 1/h < 0 ;  (c) g < l / h  < 0. ---, stable solutions; ---, 
unstable solutions. 

legends. Hence for h > 0 increasing the driving frequency corresponds to moving 
along the horizontal axis from right to left. 

It remains now for us to discuss the case h = 0 in which case (73) becomes 

dW 
a7 

i- = y W + g V +  wz+21wy. 

The real equilibrium solutions of the above equation are given by 

u =  --( ; Y + d ,  

whilst the mixed mode solutions are given by (76), (77) and (79) with h = 0. We again 
find that the latter solution exists for only a finite range of values for y.  In figures 
5(a ,  b )  we have shown the real and complex solutions for h = 0. The degenerate case 
g = h = 0 requires a complete rescaling of the finite amplitude solutions but this 
is not in fact necessary here because, as will be seen shortly, such a situation is 
not physically relevant. We see that figure 5 can be recognized as limiting forms of 
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FIGURE 5 (a) .  For legend see facing page. 

figures 4(a,  b )  respectively with the minimum points of the latter figures having 
moved off to infinity. We further note that the only non-zero stable solutions of (73) 
for h = 0 are real and that such solutions exist only for a finite range of values for y. 

We are now in a position to discuss in detail the response of the bubble in the syn- 
chronous case when Q;, and hence g, h vary. In figure 6 we have shown g and h as 
functions of Q$ for the range L2: 3 3. (Note that Q f < 3 has no physical relevance.) 
We see that at  the resonance positions, Q$ = 3.27,4.5, either lgl or Ihl or both become 
infinite. The present analysis is therefore not valid in a neighbourhood of these points. 
We also note that h changes sign at Q: = 3.29814. For Q f  = 3.29814 the coefficient g 
is positive so the bubble motion is described by figure 5 (a).  Hence when the frequency 
is increased through the unstable range - g < y 6 g the bubble responds with a finite 
amplitude motion in phase with the driving pressure oscillation. In  fact this motion 
remains stable for y 6 59 and then the finite amplitude motion will change dis- 
continuously since the only stable solution is now V = 0. If the frequency is decreased 
from any value bigger than that corresponding to y = g the zero solution remains 
stable until y = g and then the motion changes discontinuously to a stable finite 
amplitude motion in phase with the driving pressure gradient. Thus there is a hysteresis 
phenomenon associated with changing the driving pressure oscillation frequency. 
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We now discuss the response of the bubble for 0: > 3.29814 in which case h is 
always positive. In  the interval (3.29814,3-29819) the coefficients h and g are such that 
0 < g < l / h  whilst for Qi > 3.29819 we hare 0 < l / h  c 9. The equilibrium solutions 
for the former and latter situations are given by figures 4(b, c) respectively with U ,  V, 
g, h and y replaced by - U ,  - V ,  - g and - y. In view of the restricted range in which 
figure 4(b) describes the equilibrium solutions of (73) we can reasonably assume that 
only the range > 3.29819 is physically relevant. We can see that in this case the 
finite amplitude of the bubble motion changes continuously with the frequency. 
There is no hysteresis phenomenon in this case. Moreover the response of the bubble 
is sometimes in phase with driving pressure gradient (U + 0, V = 0)  for a certain 
frequency range and out of phase ( U ;  V p 0 )  otherwise. 

Thus to summarize we can say that, apart from the resonance regions, the bubble 
response to  a change in the driving frequency depends on whether > 3.29819 or 
0; < 3.29814. In  the former case no hysteresis is to be expected but phase differences 
between the driving pressure gradient and the nonspherical oscillations of the bubble 
will occur for certain frequencies. In the latter case no such phase difference is pre- 
dicted but hystereses is to be expected. 
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FIQURE 6. The coefficients h, g of the amplitude equation of the 
synchronous mode plotted versus a:. 

7. Discussion 
The analysis of this paper shows how small amplitude surface oscillations of a bubble 

are induced by an acoustic field. In  particular we have investigated in detail the cases 
when the response of the bubble is subharmonic or synchronous with the basic flow. 
We have constructed asymptotic representations of the finite amplitude motion in 
terms of the parameter e which essentially represents the difference between the driving 
frequency and the frequency at which linear theory predicts the subharmonic (or 
synchronous) mode should become unstable. 

There are important differences between the t w o  types of response. The amplitude 
of the steady bifurcating solutions is larger (O(s4)) in the subharmonic case than in 
the synchronous case O((E)). Furthermore a subharmonic response is found to lead 
to a symmetric bifurcation whereas transcritical bifurcation occurs for a synchronous 
response. The latter case also suffers secondary bifurcation for some values of the 
relevant parameters of the problem. 

The above differences are obviously related to the different structures of the ampli- 
tude equations in the two cases. Indeed quadratic terms are only present in (61) and 
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they cause the occurrence of transcritical and secondary bifurcation. We notice that 
such quadratic terms originate from the interaction between the basic flow (at lowest 
order) and the first-order perturbations. 

The synchronous case exhibits a further interesting feature. Unlike the subharmonic 
case, a steady streaming component is present in the second-order perturbations. 
Such a component comes from the interaction between the first-order basic flow and 
the leading order perturbation. Whether or not this steady streaming effect is related 
to Elder’s (1959) and Gould’s (1966) findings cannot be stated. In  fact both of these 
experimental works refer to bubbles attached to walls, and show various streaming 
regimes depending on the sonic amplitude. At least in one of these regimes the stream- 
ing appears to be associated with the occurrence of non spherical surface oscillations. 
However the presence of the wall cannot be ignored and its influence does not seem 
to be easily assessed. 

The onset of an erratic motion of the bubble is not explicable under the conditions 
examined in the present work. However one can readily see that the nonlinear inter- 
actions following the linear growth of the spherical harmonic P3 would lead at  second 
order to the excitation of the harmonic Pl, which merely consists of a displacement 
of the centre of gravity of the bubble. Alternatively a more accurate representation 
of the sound field would lead to a &dependent basic flow which would interact with 
the perturbations proportional to Pz to produce Pl. We do not pursue either of these 
possibilities in more detail here. 

The finite amplitude solutions discussed in the previous section have been found 
to be periodic both in the fast time scale imposed by the acoustic excitation and in 
the slow time scale associated with the linear growth. This results from neglecting 
any possible source of damping (viscous, acoustic, thermal) present in the actual 
phenomenon. However one can safely take the finite amplitude steady state solutions 
derived in the previous sections as good estimates of the actual equilibrium solutions 
provided: 

(i) the size of the cavity is much smaller than the acoustic wavelengths both in the 
gas and in the liquid; 

(ii) vorticity is confined within a layer of characteristic thickness (2v/w)3, much 
smaller than the average radius of the bubble. 

We notice that the assumption of rotational symmetry of the perturbations has 
considerably reduced the amount of algebraic work involved. However the structure 
of the nonlinear expansions (45), (46) and (69) is not crucially altered if the leading 
order perturbation contains $-dependent terms proportional to PF(m = 0, -1: 1, a 2). 
In  this case the analysis would lead to a set of five complex nonlinear equations for the 
amplitudes of the fundamental. The derivation of the coefficients of this system 
requires an enormous amount of algebra. 

Finally we recall that the present analysis is restricted to values of SZ which are not 
close to an integral fraction or a multiple of Q,,. 

In  such resonant regions the basic flow is no longer given in (15)-( 18) (see Prosperetti 
1974) and may contain an O( 1)  forcing. 

This paper was completed whilst one of the authors (P.H.) was a visitor at  
Rensselaer Polytechnic Institute, Troy NY 12181 and partially supported by the 
Army Research Office. 
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